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Abstract. In this paper a one-dimensional model of a vascular network based on space-time variables is investig-
ated. Although the one-dimensional system has been more widely studied using a space-frequency decomposition,
the space-time formulation offers a more direct physical interpretation of the dynamics of the system. The object-
ive of the paper is to highlight how the space-time representation of the linear and nonlinear one-dimensional
system can be theoretically and numerically modelled. In deriving the governing equations from first principles,
the assumptions involved in constructing the system in terms of area-mass flux (A,Q), area-velocity (A, u),
pressure-velocity (p, u) and pressure-mass flux(p, Q) variables are discussed. For the nonlinear hyperbolic system
expressed in terms of the (A,u) variables the extension of the single-vessel model to a network of vessels is
achieved using a characteristic decomposition combined with conservation of mass and total pressure. The more
widely studied linearised system is also discussed where conservation of static pressure, instead of total pressure,
is enforced in the extension to a network. Consideration of the linearised system also allows for the derivation
of a reflection coefficient analogous to the approach adopted in acoustics and surface waves. The derivation of
the fundamental equations in conservative and characteristic variables provides the basic information for many
numerical approaches. In the current work the linear and nonlinear systems have been solved using a spectral/hp
element spatial discretisation with a discontinuous Galerkin formulation and a second-order Adams-Bashforth
time-integration scheme. The numerical scheme is then applied to a model arterial network of the human vascular
system previously studied by Wang and Parker (To appear in J. Biomech. (2004)). Using this numerical model the
role of nonlinearity is also considered by comparison of the linearised and nonlinearised results. Similar to previous
work only secondary contributions are observed from the nonlinear effects under physiological conditions in the
systemic system. Finally, the effect of the reflection coefficient on reversal of the flow waveform in the parent
vessel of a bifurcation is considered for a system with a low terminal resistance as observed in vessels such as the
umbilical arteries.

Key words: branching flows, linearised reflection coefficient, 1D flow modelling, spectral/hp element methods,
vascular network

1. Introduction

The one-dimensional modelling of the human arterial system was introduced by Euler in 1775
[1] who derived the partial differential equations expressing the conservation of mass and
momentum for inviscid flow. In order to close the problem, he also suggested two possible,
but experimentally unrealistic, constitutive equations describing the behaviour of the elastic
wall with changes in the lumenal pressure. Apparently, he did not recognise the wave-like
nature of the flow and was not able to find a solution for his equations, citing “insuperabiles
difficultates”. The wave nature of the arterial flow was first described scientifically by Young
∗s.sherwin@imperial.ac.uk
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[2] who derived the wave speed using an argument based on intuition and analogy to New-
ton’s theory of the speed of sound in air. In 1877 Moens [3] and Korteweg [4] independently
published analyses of flow in thin-walled elastic vessels, deriving what is now known as the
Moens-Korteweg equation for the wave speed. Riemann [5] (1860) provided the analytical
tools for the general equations when he introduced the method of characteristics, which was
first applied to arterial flow more than 50 years ago, most notably by Anliker and co-workers
[6, 7] and Skalak [8].

The equations derived by Euler are a system of nonlinear partial differential equations
analogous to the shallow-water equations of hydrodynamics or the one-dimensional inviscid
equations of gas dynamics. However, under physiological conditions of the human arterial
system, the equations are only weakly nonlinear and therefore many characteristics of the
flow can be captured by the linearised system. This is essentially the approach of Womersley
[9] (1957) who linearised the two-dimensional equations for flow in straight, circular elastic
tubes and obtained the wave solution by Fourier techniques. This linear analysis has become
the ‘standard’ model of waves in the arteries found in most haemodynamics textbooks. The
success of the linearised model and the apparently periodic nature of the arterial system has
led most investigators since Womersley to analyse arterial flow in the frequency rather than
the time domain using the so-called “electrical” analogy.

Although there is a large body of work using the frequency domain analysis, many facets
of the physiological waveforms have yet to be explained. It is the conjecture of the authors
that consideration of the solution in the frequency domain is potentially limiting. The reasons
for this are twofold. Firstly the frequency domain can lead to the implicit assumption that
the arterial system is in a state of “steady oscillation” implying that the system will remain
oscillating even when the forcing from the heart is stopped. However, the characteristic speed
of wave propagation is sufficiently fast that the time scale to propagate information through
the whole arterial system is much smaller than the duration of the cardiac cycle. It is generally
observed in resting conditions that flow in the large arteries comes to rest during late diastole.
More convincingly, during ectopic beats when contraction of the heart is blocked or is so
ineffectual that the aortic valve never opens, neither the flow nor the pressure shows any hint
of the previous “periodic” behaviour. Secondly, the aortic valve is an essentially nonlinear
element dividing the cardiac cycle into systole when the ventricle is open to the arteries and
diastole when it is closed. Since the frequency domain analyses cannot distinguish between
systole and diastole, identical systolic behaviour of the ventricle would result in different
input power spectra at different heart rates. Since the fraction of the cardiac cycle occupied
by systole varies significantly with heart rate, much of the characteristic behaviour of the
ventricle during systole (and the arterial system during diastole) could be masked simply by
changes in the fundamental frequency.

An alternative approach to analyse the one-dimensional arterial system is to use the method
of characteristics in the time-space domain. The rest of the paper is strongly motivated by the
work of Wang and Parker [10, 11] who used a semi-analytical time-space domain approach
to model the linearised wave motion in arteries. In their model they used a highly idealised
cardiac function in a fairly realistic model of the anatomy of the largest arteries and based their
arterial model on the data of Westerhof and Noordergraaf [12]. The method of characteristics
has also previously been applied to the study of waves by Skalak [8], Stettler et al. [6, 7] and
Stergiopulos et al. [13].

The objective of this paper is to review the one-dimensional model starting from first prin-
ciples and to demonstrate how these equations can be applied to linear and nonlinear numerical
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Figure 1. Nomenclature for the model of a one-dimensional vessel. (a) General orientation, (b) One-dimensional
orientation.

modelling of a vascular network. Furthermore, we derive classical linear results, such as the
reflection coefficient, which are insightful in analysing the system since the nonlinearities
under many physiological conditions are relatively weak.

The paper is organised as follows, in Section 2 we detail the derivation of the govern-
ing equations by considering the conservation of mass and momentum for a single one-
dimensional vessel. Introducing the concept of a sectional algebraic pressure-area relationship
we then outline different combinations of the governing equations in terms of the variables
pressure p, area A, velocity u and flowrate Q. Using the (A, u) system we subsequently
construct both the linear and nonlinear systems in terms of characteristic variables.

In Section 2.2 we extend the single-vessel formulation to a network by considering the
modelling of junctions including both bifurcations, and the topologically similar, merging
flow junctions. Having introduced the junction modelling we can then derive the linearised
reflection and transmission coefficients [15, Chapter 2] which are the direct analogy to the
coefficients commonly applied in acoustics and surface waves [14, Chapter 8]. Finally, to
complete the network description, boundary conditions at the outflow are required which are
enforced using a terminal resistance which forces the incoming wave to be the scaled reflection
of the outgoing wave [11, 13].

In Section 3 we outline the numerical discretisation of the governing (A, u) system us-
ing a discontinuous Galerkin formulation with a one-dimensional spectral/hp element spa-
tial approximation. This formulation allows us to combine the fast convergence and good
dispersion properties, commonly associated with the spectral methods, with the geometric
flexibility to discretise each vessel in the branching network. Finally, in Section 4 we apply
the one-dimensional model to a branching network containing 55 arteries, previously studied
by Wang and Parker [10, 11], as well as analysing the effect of bifurcation reflections on flow
waveforms in a model system with low terminal resistance.

2. Problem formulation

2.1. GOVERNING EQUATIONS FOR A SINGLE VESSEL

Consider a vessel of length l with a centreline described by s(x) and cross sectional area
normal to s denoted by A(s, t) as indicated in Figure 1(a). Our first modelling simplification
will be to assume that the local curvature is everywhere small enough so that the axial direction
can be described by a Cartesian coordinate x as shown in Figure 1(b) so that the problem can
be defined in one-dimension. At each cross section we define A(x, t) = ∫

S
dσ as the area of

the cross section S and u(x, t) = 1
A

∫
S
ûdσ, p(x, t) = 1

A

∫
S
p̂dσ as the average velocity and

internal pressure over the cross section where û(x, σ, t) and p̂(x, σ, t) denote the values of
velocity and pressure within a constant x-section. We also introduce the dependent variable
Q(x, t) = Au which represents the volume flux at a given section.
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We therefore have three independent variables A, u, p or equivalently A,Q,p. The re-
quired three independent equations will be provided by the equations of conservation of mass
and momentum and a constitutive equation relating cross sectional area to internal pressure.
In what follows, we shall also assume that the fluid is incompressible and Newtonian and so
the density ρ and dynamic viscosity µ are constant. Our final modelling assumption is that
the structural arterial properties are constant at a section.

In the Sections 2.1.1 and 2.1.2 we shall derive conservation of the mass and momentum
equations starting from a control volume statement. As we shall see in Section 2.1.1, applying
the mass conservation statement to a control volume allows us to derive the Windkessel
equation commonly used in reduced modelling of the arterial system [16]. This statement
does not, however, inform us about the dynamics of the system along the vessel which is
where the one-dimensional system proves to be more insightful. The dynamics of the one-
dimensional system are more easily understood in terms of the characteristic variables which
are derived in Section 2.1.5. However, before doing so, we define the pressure area relationship
and alternative forms of the mass and momentum equations in Sections 2.1.3 and 2.1.4.

2.1.1. Mass-conservation equation
Defining the vessel shown in Figure 1(b) as our control volume, conservation of mass requires
that the rate of change of mass within the control volume plus the net mass flux out of the
control volume is zero. Denoting the volume as V (t) = ∫ l

0 A dx, where l is the length of
the vessel and assuming there is no seepage through the side walls, we can write the mass
conservation as

ρ
dV (t)

dt
+ ρQ(l, t) − ρQ(0, t) = 0. (1)

If seepage does occur, a source term can be included to accommodate this contribution.
To determine the one-dimensional equation of mass conservation, we insert V (t) =∫ l

0 A(x, t)dx in Equation (1) and note that

Q(l, t) − Q(0, t) =
∫ l

0

∂Q

∂x
dx

to obtain

ρ
d

dt

∫ l

0
A(x, t)dx + ρ

∫ l

0

∂Q

∂x
dx = 0.

If we assume l is independent of time, we can take the time derivative inside the integral to
arrive at

ρ

∫ l

0

{
∂A

∂t
+ ∂Q

∂x

}
dx = 0.

Since we have not specified the length l, the control volume is arbitrary and so the above
equation must be true for any value of l and so in general we require that the integrand is zero.
We therefore obtain the differential one-dimensional mass conservation equation

∂A

∂t
+ ∂Q

∂x
= ∂A

∂t
+ ∂uA

∂x
= 0. (2)
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Remark: The control volume statement (1) can be used to obtain the time variation of the
“Windkessel” pressure as originally discussed by Frank [17]. Introducing the vessel compli-
ance C, defined as C = dV

dP
where P is an appropriate average of the pressure p over length l,

and applying the chain rule in conjunctions with Equation (1) leads to

dP

dt
= dP

dV

dV

dt
= Q(0, t) − Q(l, t)

C
. (3)

The definition of compliance as a constant implicitly assumes a uniform variation of pressure
within the volume of the vessel. Therefore if we know the inflow flux Q(0, t) and define a re-
lationship between Q(l, t) and pressure P(t), then Equation (3) can be integrated to determine
a temporal pressure variation within the vessel. Normally the outflow is assumed to be related
to the pressure by a momentum-type relationship of the form Q(l, t) = (P (t) − P∞)/R,
where P∞ is an asymptotic pressure and R is the effective resistance of the peripheral systemic
circulation. Nevertheless, we recall that it is the pressure gradient which drives the flow within
the vessel and so the uniform in space temporal pressure variation does not significantly affect
the dynamics of the flow velocity. As noted in recent work by Wang et al. [18], the temporal
Windkessel pressure does, however, contribute to the late-diastole pressure-time history within
the vessels.

2.1.2. Momentum equation
Again we consider the vessel as our control volume and assume that there is no flux through
the side walls in the x-direction. The momentum equation states that the rate of change of
momentum within the control volume plus the net flux of momentum out of the control volume
is equation to the applied forces on the control volume and can be stated over an arbitrary
length l as

d

dt

∫ l

0
ρQdx + (αρQu)l − (αρQu)0 = F, (4)

where we recall that Q = Au and define F as the applied forces in the x-direction acting
on the control volume. Since ρQ = ρuA = ρ

∫
S
ûdσ represents the x-momentum integrated

over the section S, the left-hand side of Equation (4) is analogous to the left-hand side of
the mass conservation given by Equation (1). However, in the momentum balance we have
introduced a momentum flux correction factor ‘α’ which accounts for the nonlinearity of the
sectional integration in terms of the local velocity û, i.e.,∫

S

ρ(û)2dσ ≡ αρu2A = αρQu ⇒ α(x, t) =
∫
S
û2dσ

Au2
.

When the the flow profile is uniform over a section, α = 1.
To complete Equation (4) we need to define the applied forces F which typically involve a

pressure and viscous force contribution, i.e.,

F = (pA)0 − (pA)l +
∫ l

0

∫
∂S

p̂nxdsdx +
∫ l

0
f dx, (5)

where ∂S is the boundary of section S, nx is the x-component of the surface normal and
f represents is the friction force per unit length. The side wall pressure force given by the
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double integral can be simplified by assuming constant sectional pressure and treating the
tube as axisymmetric, the term becomes∫ l

0

∫
∂S

p̂nxdsdx =
∫ l

0
p

∂A

∂x
dx. (6)

Finally, if we combine Equations (4), (5) and (6), we obtain the control-volume statement of
momentum conservation

d

dt

∫ l

0
ρQdx + (αρQu)l − (αρQu)0 = (pA)0 − (pA)l +

∫ l

0
p

∂A

∂x
dx +

∫ l

0
f dx. (7)

To obtain the one-dimensional differential momentum equation we observe that

(αρQu)l − (αρQu)0 =
∫ l

0

∂(αρQu)

∂x
dx, (pA)0 − (pA)l = −

∫ l

0

∂(pA)

∂x
dx

which, upon insertion in (7) and assuming l is independent of time and ρ is constant, gives us

ρ

∫ l

0

{
ρ

∂Q

∂t
+ ρ

∂(αQu)

∂x

}
dx =

∫ l

0

{
−∂(pA)

∂x
+ p

∂A

∂x
+ f

}
dx.

Once again this relationship is satisfied for an arbitrary length l and so can only be satisfied
when the integrands are equal. The one-dimensional momentum equation becomes

∂Q

∂t
+ ∂(αQu)

∂x
= −A

ρ

∂p

∂x
+ f

ρ
, (8)

where we have simplified the right-hand side pressure gradient terms.

2.1.3. Pressure-area relationship and distensibility
The mass and momentum Equations (2) and (8) give us two equations with three unknowns
A, u and p or alternatively A,Q and p. We need to close the system by defining an explicit
algebraic relationship between the sectional pressure p and area A. In the following analysis
we restrict our attention to sectional algebraic relationships functionally denoted by

p = F (A; x, t). (9)

The pressure is assumed to be dependent upon the area and its derivatives. The area is therefore
implicitly dependent upon time and space. Although the wall properties of a vessel alter the
scaling of the relationship (9), they are not independent variables although they may depend
upon the area.

From the functional form of the pressure area relationship we define the distensibility D

as:

D = 1

A

dA

dp
. (10)

The algebraic form we will adopt later in this paper assumes a thin wall tube where each
section is independent of the others. Using Laplace’s law leads to a pressure area relationship
of the form

p = pext + β(
√

A − √
A0), (11)
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where

β(x) =
√

πh0E

(1 − ν2)A0
.

Here h0(x) and A0(x) denote the vessel-wall thickness and sectional area at the equilibrium
state (p, u) = (pext, 0), E(x) is the Young’s modulus, pext is the constant external pressure,
and ν is the Poisson ratio, typically taken to be ν = 1/2 since biological tissue is practically
incompressible. The distensibility for the pressure relation (11) is

D = 2

β
√

A
.

2.1.4. The (A, u), (A,Q), (p, u) and (p,Q) systems
We can write the governing one-dimensional system in terms of the variables (A,Q) as

∂A

∂t
+ ∂Q

∂x
= 0, (12)

∂Q

∂t
+ ∂αQ2/A

∂x
= −A

ρ

∂p

∂x
+ f

ρ
. (13)

This system, together with the pressure-area relation, is one of the most general form of one-
dimensional models and has been used in [19]. This system, with a slightly different pressure
relationship, has been shown by Canic and Kim [20] to lead to smooth solutions under some
reasonable conditions on the smoothness of boundary and initial data. Two critical assump-
tions needed to reach this conclusion are the pulsatility of the inflow data and a bound on the
length of the tube, both are verified for physiological flows in the human arterial tree. In the
same work it is also shown that, if the solution is smooth and the initial and boundary data
are such that A > 0, A remains strictly positive for all times. Finally we note that Formaggia
et al. [19] also used system (12–13) to derive an energy inequality which bounds a measure
of the energy of the hyperbolic system, as well as an an entropy function for the system.

Alternatively we can write the system in terms of the variables (A, u). To manipulate the
momentum Equation (13) it is convenient to write it as

u

{
∂A

∂t
+ ∂uA

∂x

}
+ u

∂(α − 1)uA

∂x
+ A

{
∂u

∂t
+ αu

∂u

∂x

}
= −A

ρ

∂p

∂x
+ f

ρ
,

where the first bracketed expression is the mass conservation equation (12) and is therefore
zero.

If we assume inviscid flow with a flat velocity profile, which implies that α = 1 and f = 0,
we can write the one-dimensional system in terms of the (A, u) variables as

∂A

∂t
+ ∂uA

∂x
= 0, (14)

∂u

∂t
+ ∂u2/2

∂x
= − 1

ρ

∂p

∂x
. (15)

In both the systems (12–13) and (14–15) we can introduce the pressure area relationship
through the pressure gradient term by noting that

∂p

∂x
= 1

DA

∂A

∂x
+ r(x). (16)
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Here we observe that A = A(p) and r(x) represents the other spatial dependencies in the pres-
sure area relationship. For example, in the pressure-area relationship given by Equation (11)

r = ∂p

∂β

∂β

∂x
+ ∂p

∂A0

∂A0

∂x
.

Finally, from a clinical perspective, it is convenient to consider the system in terms of the
variables (p, u) or (p,Q), since these are the physically measurable variables in a clinical
environment. Using the definition of distensibility and assuming β and A0 are constant, we
obtain

∂A

∂t
= DA

∂p

∂t
and

∂A

∂x
= DA

∂p

∂x
.

The inviscid one-dimensional system can now be written in terms of the (p, u) variables as

∂p

∂t
+ u

∂p

∂x
+ 1

D

∂u

∂x
= 0, (17)

∂u

∂t
+ ∂u2/2

∂x
= − 1

ρ

∂p

∂x
. (18)

Alternatively we can combine Equations (17) and (13) to define the governing one-dimen-
sional system in terms of the variables (p,Q) as

∂p

∂t
+ u

∂p

∂x
+ 1

D

∂u

∂x
= 0, (19)

∂Q

∂t
+ ∂αQ2/A

∂x
= −A

ρ

∂p

∂x
+ f

ρ
. (20)

We also note that in the above system we have not assumed an inviscid flat profile and so have
left α and f in the second equation.

In summary, we note that the most general system derived in this section is represented
in terms of the (A,Q) variables as given by Equations (12) and (13). Under the assumption
of inviscid flow with a flat velocity profile we can obtain a form in terms of the variables
(A, u) as given by Equations (14) and (15) both systems also require an algebraic pressure
area relationship. We also note that the (A, u) system has a very compact conservative form
which will lead us to adopt this form in the next section. The most restrictive system is the
system described by Equations (17–18) in terms of the (p, u) variables. Here we have assumed
inviscid flow with a flat velocity profile and that material properties, β and equilibrium area A0

are constant. Finally the (p,Q) system, given by Equations (19–20), requires the assumption
of constant material properties and equilibrium area but does not assume an inviscid, flat
velocity profile.

2.1.5. The characteristic system
Considering Equations (14) and (15) with the pressure-area relationship (11), when β and A0

are constant, we can write the system in non-conservative form as

∂U

∂t
+ H (U)

∂U

∂x
= 0, (21)
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where

U =
[

A

u

]
H =

[
u A
1

ρDA
u

]
,

and we have also applied Equation (16).
Under the assumption that A > 0,indeed a necessary condition to have a physically

relevant solution, the matrix H has two real eigenvalues

λ1,2(H ) = u ± c,

where c = 1√
ρD

is the wave speed for the nonlinear system. For typical values of velocity,
vessel area and the elastic parameter β encountered in arteries under physiological conditions,
we find that λ1 > 0 and λ2 < 0.

In system (21) the matrix of left eigenvalues, L, of H can be written as

L =
[

c
A

1
− c

A
1

]
, (22)

where

LH = �L and � =
[

λ1 0
0 λ2

]
.

Noting that H = L−1�L and premultiplying system (21) by L, we obtain

L
∂U

∂t
+ �L

∂U

∂x
= 0. (23)

Finally we can introduce a change of variables such that ∂W
∂U

= L where W = [W1,W2]T is
the vector of characteristic variables which transforms Equation (23) into

∂W

∂t
+ �

∂W

∂x
= 0,

which is a system of decoupled scalar equations, i.e.,

∂W1

∂t
+ λ1

∂W1

∂x
= 0, (24)

∂W2

∂t
+ λ2

∂W2

∂x
= 0. (25)

The scaling of L in (22) was chosen so that ∂2W1,2
∂A∂u

= ∂2W1,2
∂u∂A

and we can determine the
characteristic variables as

W1,2 =
∫ u

u0

du ±
∫ A

A0

c

A
dA = u − u0 ±

∫ A

A0

c

A
dA, (26)

where (u0, A0) is taken as a reference state. The characteristic variables given by Equation (26)
are also the Riemann invariants of the system (14) and (15) in terms of the (A, u) variables.

For the pressure area relationship defined in Equation (11) we can derive an explicit form
of W . Recalling that c = 1/

√
ρD and evaluating D for the pressure area relationship (11), we

obtain

W1,2 = u ± 4(c − c0) = u ± 4

√
β

2ρ

(
A1/4 − A

1/4
0

)
, (27)
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where we have assumed that u0 = 0 when A = A0. The above result is also obtained by
Formaggia et al. [19, 21] who considered the more general (A,Q) system.

System (21) can be linearised about the diastolic conditions A = A0 and u = 0. Denoting
the linearised perturbation variables for area and velocity as a and u′, respectively, inserting
u = u′ and A = A0 + a into Equation (21) and ignoring quadratic terms, we obtain

∂U 0

∂t
+ H 0

∂U 0

∂x
= 0, (28)

where

U 0 =
[

a

u′

]
, H 0 =

[
0 A0
1

ρD0A0
0

]
and D0 = D(A0).

Following a similar derivation as for the nonlinear system the linearised wave speed is
λ0

1,2(H 0) = ±c0 where c0 = 1√
ρD0

and the linearised characteristic variables W 0 = [W 0
1 ,W 0

2 ]T
are

W 0
1,2 = u′ ±

∫ A

A0

c0

A0
dA = u′ ± c0

A0
a. (29)

Finally we also observe that the expression of the characteristic variables in terms of
(p, u) can also be obtained from first principles or by using the distensibility definition in
Equation (26) since,

W1,2(p, u) =
∫ u′

u0

du ±
∫ p

p0

c

A

dA

dP
dP = u′ ±

∫ p

p0

cD dP. (30)

For the linearised (p, u) system, Equation (30) can be integrated to determine

W 0
1,2(p, u) = u′ ±

∫ p

p0

c0D0 dP = u′ ± p′

ρc0
(31)

where D0 = 1/(ρc2
0) and p = p0 + p′.

2.2. JUNCTIONS, THE LINEAR REFLECTION COEFFICIENT AND TERMINAL RESISTANCE

2.2.1. Splitting flows at junctions
The one-dimensional model of the compliant tube can be extended to handle the arterial tree
by imposing suitable interface conditions at the bifurcations or branching points of the tree.
Assuming we have an initial compatible state (Ai, ui) within each vessel of the bifurcation, we
need to determine the values of the variables (A, u) in all vessels at a later time. The variables
(A, u), as well as A0 and β can all be discontinuous at a junction and so the solution at this
point can be considered as the solution to a Riemann problem.

From the decomposition (24–25) into characteristic variables W1,W2 of the governing
system (14–15) we know that the system can be interpreted in terms of a forward- and a
backward-travelling waves.

Consider the model bifurcation configuration shown in Figure 2 where we denote the
parent vessel by an index 1 and the upper and lower daughter vessels by the indices 2 and 3,
respectively. At the bifurcation we have six unknowns: (A1, u1) in the parent vessel; (A2, u2)

in the upper daughter vessel and (A3, u3) in the lower daughter vessel.
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Figure 2. Notation for arterial tree bifurcation.

Looking at the problem from a characteristics point of view, information can only reach
the bifurcation from within vessel 1 by a forward-travelling wave. The forward-travelling
wave is governed by Equation (24) in terms of the characteristic variable W 1

1 that according
to Equation (27) is a function of (A1, u1). Here the superscript denotes the vessel num-
ber. Similarly, within the daughter vessels information can only reach the bifurcation by a
backwards-travelling wave which is governed by Equation (25) with characteristic variables
W 2

2 (A2, u2) or W 3
2 (A3, u3). The hyperbolic nature of the problem reduces the incoming in-

formation to three constant characteristic variables W 1
1 ,W 2

2 and W 3
2 . The first three equations

of the Riemann problem are obtained by imposing that the characteristic variables in each ves-
sel should remain constant. From the definition of the characteristic variables for the nonlinear
system, given by Equation (27), we have

u1 + 4(c1 − c1
0) = W 1

1 , (32)

u2 − 4(c2 − c2
0) = W 2

2 , (33)

u3 − 4(c3 − c3
0) = W 3

2 , (34)

where c1
0, c

2
0, c

3
0 are the values of the wave speed c evaluated using the equilibrium area A0 in

vessels 1, 2 and 3, respectively.
To close the problem we require another three independent equations. The first condition

is physically motivated by requiring that the mass is conserved through the bifurcation and
therefore mass flux balance results in Q1 = Q2 + Q3. The other two conditions are obtained
from the requirement of continuity of the momentum flux at the bifurcation. This leads to
the condition that total pressure p + 1

2ρu2 should be continuous at the boundary. These
requirements provide the three additional equations:

A1u1 = A2u2 + A3u3, (35)

p1 + 1

2
ρu2

1 = p2 + 1

2
ρu2

2, (36)

p1 + 1

2
ρu2

1 = p3 + 1

2
ρu2

3. (37)

For the linearised system (28) the continuity of flux in the momentum equation leads to the
equivalent condition that the static pressure should be continuous through the bifurcation.

In summary, the six equations given by (32–37) define a nonlinear system of algebraic
equations which determine the values (A1, u1), (A2, u2) and (A3, u3) at the bifurcation. The
inputs to the system are the material properties of the vessels β or equivalently D, the vessel
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Figure 3. Notation for merging flow junction.

equilibrium areas A0 at the bifurcation and the values of W 1
1 , W 2

2 and W 3
2 which can be eval-

uated from the initial equilibrium state (Ai, ui) in each vessel. The solution to this Riemann
problem is used to evaluate an upwind flux at the junction in the numerical discretisation as
discussed in Section 3.

2.2.2. Merging flows at junctions
Although considerable attention has been paid to the analysis of splitting of flows at arterial
junctions, it is also of interest to study flows that merge at junctions. This is a common
situation in veins and at a number of junctions in the systemic arteries, such as the junc-
tion between the vertebral arteries and the basilar artery at the base of the brain. It is also
important in surgical interventions such as arterial bypass grafting where an anastomosis or
cross-connection is surgically introduced to provide an alternative path around a blockage
typically caused by atheromatous disease.

The conditions at the junction can be derived as previously. The downstream daughter ves-
sels (labelled 2 and 3) in Figure 3 are orientated in opposite directions to the splitting-flow case
of Section 2.2.1. Forward-travelling characteristic waves bring information to the junction in
both vessels 1 and 3. The only backward-travelling information arrives at the junction from
vessel 2. The merging junction therefore uses the following characteristic equations

u1 + 4(c1 − c1
0) = W 1

1 , (38)

u2 − 4(c2 − c2
0) = W 2

2 , (39)

u3 + 4(c3 − c3
0) = W 3

1 . (40)

Mass conservation now becomes

A1u1 + A3u3 = A2u2. (41)

Since continuity of total pressure remains unchanged the six equations given by (36–41),
define a nonlinear system of algebraic equations which determine the values (A1, u1), (A2, u2)

and (A3, u3) at the anastomosis.
We observe that the merging flow of Figure 2 and the splitting flow shown in Figure 3 are

geometrically similar. A transformation x → −x and swapping the numbering of vessel 1 and
2 in Figures 2 and 3 or, alternatively, a transformation u3 → −u3 will map one flow into the
other since under this mapping W 3

2 = −W 3
1 .

2.2.3. Linear reflection coefficient, Rf

Under physiological conditions it is argued that the nonlinearity of the (A, u) system (14),(15)
is relatively small. Therefore, it is of interest to study the role of junctions such as splitting and
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Figure 4. Linearised wave reflecting off a bifurcation. a) Configuration just before the perturbation meets the
bifurcation. b) Configuration just after the perturbation meets the bifurcation. c) Characteristic x,t plot of each
vessel during reflection.

merging flow at junctions under the assumptions of the linearised system. Classical analysis
in related linearised problems of acoustics and surface waves [14, Chapter 8], [ 15, Chapter 2]
has adopted the use of a reflection coefficient when a wave meets a boundary. As originally
demonstrated by Frank [17], it is also possible to obtain a reflection coefficient, Rf , for the
linearised system relating the jump in velocity, area or pressure of an incoming perturbation
to the reflected jump in velocity, area or pressure.

To derive the reflection coefficient, Rf , we consider the configuration shown in Figure 4(a)
where a perturbation of 	u1,	a1 on the equilibrium conditions (denoted by overbars) leads
to a forward-travelling wave in vessel 1. After reaching the junction there is a change in the
equilibrium state so that there is a perturbation travelling in all vessels denoted by δu, δa.

As with the nonlinear system we start by considering the characteristic information ap-
proaching the junction which for the linear system can be simplified into a perturbation form.
We note that the forward travelling linearised characteristic W 0

1 in vessel 1, just after the
wave reaches the junction, must be constant. Considering a characteristic line such as A-B in
Figure 4(a) we know that along this characteristic

ū′
1 + δu1 + c1

0

A1
0

(ā1 + δa1) = W 0
1 (42)

and, just before the reflection, we also know that

W 0
1 = ū′

1 + 	u1 + c1
0

A1
0

(ā1 + 	a1). (43)
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Combining Equations (42) and (43) allows us to eliminate W 0
1 . The linearity of the char-

acteristic equations also implies that

δu1 + c1
0

A1
0

δa1 = 	u1 + c1
0

A1
0

	a1. (44)

A similar process for the backwards-travelling linear waves, W 0
2 in vessels 2 and 3 (see lines

C-D and E-F in Figure 4(c)) leads to the analogous conditions

δu2 − c2
0

A2
0

δa2 = 0, (45)

δu3 − c3
0

A3
0

δa3 = 0. (46)

We require three additional equations to solve the six perturbation states. This is once again
provided by linearised mass-flux conservation, and in the case of the linear equations, pressure
continuity. Mass conservation for the linearised system reads as

A1
0δu1 = A2

0δu2 + A3
0δu3, (47)

where we assume that the mass flux is conserved for the equilibrium state, i.e., A1
0ū

′
1 = A2

0ū
′
2+

A3
0ū

′
3. Pressure continuity at the bifurcation implies that δp1 = δp2 = δp3 which provides the

two final equations in terms of static pressure perturbation. To close the system, we recall that

the definition of distensibility for the linear system is D0 = D(A0) = 1
A0

dA
dP

∣∣∣
A0

which upon

integration about the linearised state results in

δp = 1

D0A0
δa. (48)

Finally, using the fact that D0 = 1/(ρc2
0), we can express pressure continuity in terms of area

perturbations as

(c1
0)

2

A1
0

δa1 = (c2
0)

2

A2
0

δa2 = (c3
0)

2

A3
0

δa3. (49)

Equations (44–47) and (49) represent a linear system of six equations in terms of (δu, δa)

within each vessel, assuming (	u1,	a1) is known. Inserting Equation (44),(45) and (46) into
(47) and using equation (49) to express δa2, δa3 in terms of δa1, we obtain(

A1
0

c1
0

+ A2
0

c2
0

+ A3
0

c3
0

)
δa1 =

(
A1

0

c1
0

)2

	u1 +
(

A1
0

c1
0

)
	a1. (50)

This equation can be put into a more compact form by noticing that the changes across the
forward-travelling incoming wave in vessel 1, 	u1 and 	a1, are related through the charac-
teristic of any backward travelling wave, for example line G-H in Figure 4(c). This leads us to
the condition

ū′
1 + 	u1 − c1

0

A1
0

(ā1 + 	a1) = ū′
1 − c1

0

A1
0

ā1
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which simplifies to

	u1 − c1
0

A1
0

	a1 = 0. (51)

Combining Equations (50) and (51) we arrive at

δa1

	a1
=

2
A1

0

c1
0

A1
0

c1
0

+ A2
0

c2
0

+ A3
0

c3
0

. (52)

Consistent with the work on surface tidal waves [14] we define the reflection coefficient [11],
Rf as the ratio of the change of pressure across the reflected wave, δ̂p = δp − 	p, to the
change of pressure in the incident wave, 	p. From Equation (48) we note that a change in
pressure is equivalent to a change in area, the reflected wave δ̂a1 is defined as δ̂a1 = δa1−	a1

and so the linear reflection coefficient for our problem can be written as

Rf = δ̂a1

	a1
=

A1
0

c1
0

− A2
0

c2
0

− A3
0

c3
0

A1
0

c1
0

+ A2
0

c2
0

+ A3
0

c3
0

. (53)

Using the characteristic perturbation Equations (44) and (51), we further note that the lin-
ear reflection coefficient for perturbations in velocity is the negative of Equation (53), i.e.,
δ̂u/	u = −Rf . Finally, the transmission coefficient, T , can be defined as the ratio of the
pressure perturbation transmitted to vessels 2 or 3 to the pressure perturbation in vessel 1,
i.e., T = δp2/	p1 = δp3/	p1. Since pressure is constant at the bifurcation for the linearised
system, we get T = δp1/	p1 = 1 + Rf .

We note that the anatomical features of bifurcations in the human arterial system are such
that forward-travelling waves in the parent vessel are well matched and therefore

A1
0

c1
0

− A2
0

c2
0

− A3
0

c3
0

≈ 0.

However this necessarily means that the backwards-travelling waves are not well matched
since

A2
0

c2
0

− A1
0

c1
0

− A3
0

c3
0

	= 0.

Two other observations on the linear reflection coefficient Rf are noteworthy. Firstly that the
result for vessels 2 and 3 are analogous and can be obtained directly by permuting the vessel
indices. Secondly, the symmetry between the splitting and merging junctions discussed in
Section 2.2.2 implies that the reflection coefficient for the merging flows is identical to that
defined by Equation (53).

2.2.4. Terminal resistance, Rt

The systemic and pulmonary human arterial system is a network of large arteries branching
out into many smaller arteries that continue to bifurcate into arterioles and capillaries of the
micro-circulation which are very small and numerous. If we are only interested in the larger
arteries in the network, the problem can be reduced in size by only modelling a part of the
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network. However, the networks of blood vessels further down the arterial system will also
be reflecting backward-travelling waves in the body. Therefore, an approximation needs to
be included for these reflections at the boundary of the modelled arteries. This introduces the
concept of terminal resistance.

In the current work we adopt a definition of the terminal resistance, Rt , as the negative
of the ratio of the incoming characteristic variable at the boundary, W2, to the outgoing
characteristic variable, W1, i.e.,

Rt = −W2

W1
. (54)

In the above definition we assume that W1 and W2 have been defined with respect to the
equilibrium state as is the case in Equations (27), (29) and (31). A value of Rt = 1 represents
a full reflection of the outgoing wave whereas Rt = 0 corresponds to no reflection or an
absorbing outflow. Since u = (W1 +W2)/2, the definition (54) implies that u = W1(1−Rt)/2
and so a value of Rt = 1 represents a total blockage condition u = 0.

The definition of terminal resistance given in Equation (54) has previously been adopted
in the work of Wang et al. [11]. To relate the above definition to their work, we recall that the
form of the linearised characteristic variables is given in terms of (u′, p) by Equation (31) and
note that the terminal resistance for this system can be defined as

Rt = −W 0
2

W 0
1

= −u′ − p

ρc0

u′ + p

ρc0

= −ρc0 − p

u′

ρc0 + p

u′
= −Rp − ρc0

Rp + ρc0
. (55)

Rp = p/u′ represents the resistance of the arterial network beyond the terminal vessel. An
approach for calculating the terminal resistance was proposed by Sergiopulos and Young [13]
who assumed that p is the pressure upstream of the vessel and u′ is the mean velocity in the
terminal vessels. The mean velocity is based on the conserved distribution of blood flow in
the body and the venous pressure is assumed to be zero.

3. Numerical discretisation

The principal numerical challenge of modelling the one-dimensional arterial network is to
propagate waves for many periods without suffering from excessive dispersion and diffusion
errors. Since the characteristic system is inherently sub-critical (i.e., u 
 c) and does not
produce shocks under physiological conditions, high-order methods are attractive due to the
fast convergence of the phase and diffusion properties with the polynomial order of the scheme
[22], [23, Chapters 2 and 6].

The discontinuous Galerkin formulation is a convenient formulation for high-order discret-
isation of hyperbolic conservation laws. Following the work of Cockburn and Shu [24] and
Lomtev, Quillen and Karniadakis [25] we proceed as follows.

The one-dimensional inviscid hyperbolic system (14–15) can be written in conservative
form as

∂U

∂t
+ ∂F

∂x
= 0, where U =

[
A

u

]
,F =

[
uA

u2

2 + p

ρ

]
. (56)
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To solve this system in a domain � = (a, b) discretized into a mesh of Nel elemental non-
overlapping regions �e = (xl

e, x
u
e ), such that xu

e = xl
e+1 for e = 1, . . . , Nel , and

Nel⋃
e=1

�e = �,

we start by constructing the weak form (56) with respect to a set of weak vector spaces φ, i.e.,(
∂U

∂t
, φ

)
�

+
(

∂F

∂x
, φ

)
�

= 0, (57)

where

(u, v)� =
∫

�

u v dx.

is the standard L2(�) inner product. Decomposing the integral into elemental regions, we
obtain

Nel∑
e=1

[(
∂U

∂t
, φ

)
�e

+
(

∂F

∂x
, φ

)
�e

]
= 0. (58)

Integrating the second term by parts leads to

Nel∑
e=1

[(
∂U

∂t
, φ

)
�e

−
(

F ,
dφ

dx

)
�e

+ [φ · F ]
xu
e

xl
e

]
= 0. (59)

To get the discrete form of our problem, we choose U to be in the finite space of L2(�)

functions which are polynomial of degree P on each element. We indicate an element of
such a space using the superscript δ. We also note that U δ may be discontinuous across inter-
element boundaries. To attain a global solution in the domain � we need to allow information
to propagate between the elemental regions. Information is propagated between elements by
upwinding the boundary flux in the third term of Equation (59). Denoting the upwinded flux
as F u, we can now write the discrete weak formulation as

Nel∑
e=1

[(
∂U δ

∂t
, φδ

)
�e

−
(

F (U δ),
dφδ

dx

)
�e

+ [
φδ · F u

]xu
e

xl
e

]
= 0. (60)

Following the traditional Galerkin approach, we choose the test function within each element
to be in the same discrete space as the numerical solution U δ. At this point, if we define our
polynomial basis and choose an appropriate quadrature rule, we have a semi-discrete scheme.

Finally we select our expansion bases to be a polynomial space of order P and expand our
solution on each element e in terms of Legendre polynomials Lp(ξ), i.e.,

U δ
∣∣
�e

(xe(ξ), t) =
P∑

p=0

Lp(ξ)Û
p

e (t).

where, following standard finite-element techniques, we consider ξ in the reference element
�st = {−1 ≤ ξ ≤ 1} and introduce the elemental affine mapping

xe(ξ) = xl
e

(1 − ξ)

2
+ xu

e

(1 + ξ)

2
.
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We note that the choice of discontinuous discrete solution and test functions allow us to
decouple the problem on each element, the only link coming through the upwinded bound-
ary fluxes. Legendre polynomials are particularly convenient because the basis is orthogonal
with respect to the L2(�e) inner product. To complete the discretisation, we require a time-
integration scheme. In the current scheme we have adopted a second-order Adams-Bashforth
scheme.

The calculation of the upwind flux F u is an essential component of the discontinuous
Galerkin formulation. Through the evaluation of the upwind flux we are able to enforce
information propagation between elemental boundaries either within a single vessel or at a
junction. It also allows us to impose both inflow and outflow boundary conditions in a weak
sense. For an elemental boundary within a single vessel the upwinded flux is evaluated by de-
termining the upwinded characteristic variables at the elemental interface. For the subcritical
system we are considering (i.e., u < c) this involves determining W1 from the backward
boundary and W2 from the forward boundary. The upwinded variables (uu,Au) can then
be determined using Equations (27) or (29) and subsequently the upwinded flux F u is then
evaluated. For bifurcations a Newton iteration is required to solve for the upwinded variables
(A1, u1),(A2, u2),(A3, u3) as discussed in Section 2.2.1. For a more detailed discussion on the
numerical implementation see reference [26].

4. Application

In this section we apply the numerical discretisation of Section 3 to the one-dimensional
model network in terms of (A, u) variables as discussed in Section 2. We shall focus on two
applications. In Section 4.1 we shall consider a network of 55 arteries, previously considered
by Wang and Parker, and in Section 4.2 we will consider a simplified model of a reduced
network to discuss the influence of a reflection at a bifurcation on the reversal of the flow
waveform.

Any network of vessels can be characterised in terms of its geometrical and dynamic
similarity. Geometric similarity for the one-dimensional system requires that the ratio of the
vessel lengths and diameters to a characteristic scale is the same. For example, we can choose
to define the network with respect to a reference diameter d0 such as the aortic diameter.
To complement the geometric similarity we also define two dynamic parameters; the Mach
number, M, and the Strouhal frequency, St, defined as

M = u

c0
= u

√
ρD0, St = d0

c0T
.

Recall that c0 = 1/
√

ρD0 is the linearised wave speed and is related to the linearised distens-
ibility D0, ρ is the fluid density and T is the time scale of the input wave normally associated
with cardiac cycle. Under the non-dimensionalisation

x� = x

d0
, A� = A

d2
0

, u� = u

u0
t� = t

T
, p� = pD0,

where u0 is a characteristic convection velocity (for example the mean inflow velocity), the
(A, u) system (14–15) can be written as

St

M0

∂A�

∂t�
+ ∂A�u�

∂x�
= 0,
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St

M0

∂u�

∂t�
+ ∂

∂x�

(
p�

M2
0

+ (u�)2

2

)
= 0,

where M0 = u0/c0. We note that St/M0 is essentially a Strouhal number based on u0 rather
than c0.

4.1. ARTERIAL NETWORK

A simplified arterial network containing the 55 largest arteries in the human body was pro-
posed and modelled using electrical circuits by Westerhof in reference [12]. This reference
provides physiological data for diameters, wall thickness, length and elastic moduli for each
of the 55 arteries. Terminal resistances for the model have been calculated in [13] using the
method described in Section 2.2.4. Wang and Parker [11] found that some of the bifurcations
were ill-matched for forward travelling waves and the reflections that they generated obscured
the reflections from the terminal segments and adjusted the diameters of the 55 arteries to give
well-matched linear forward travelling waves, i.e., waves that produce small reflections at the
bifurcations. The bifurcations are, however, not well-matched for backward travelling waves.

We have adopted the modifications proposed in [11] to the published models [13, 12]
to compute the pulsatile one-dimensional blood flow through the arterial system using the
discontinuous Galerkin method. Figure 5 shows the connectivity of the arteries used in our
model of the arterial network. The normalised geometry of the network and the reduced wave
speed for each vessel, ci

red = 1/Sti = ci
0T /d0 where ci

0 is the linearised wave speed in the ith

vessel, are included in Table 1.
The flow in the model arterial system is assumed initially to be at rest. A periodic half

sine wave is then imposed at the ascending aorta through the forward characteristic, W1. The
values for the nonlinear and linearised model

W1 = u0 + 4cd W 0
1 = u0 + c0

1

A1
0

ad

where over each time period of length T

u0 = 0,
Ad(t)

A1
0

=
{

1 + σ sin(πt/0·3) t < 0·3T

1 0·3 < t < T

cd(t) =
√

β

2ρ
A

1/4
d and ad(t) = Ad(t) − A1

0,

where σ = 0·578 and was chosen to achieve a pressure difference of 5500 Pa over the
incoming wave of a physical ascending aorta. This inflow treats the aortic valve as an absorber
throughout the cardiac cycle. For all computations, second-order time integration with a time
step of 	t/T = 10−5 and spatial discretisation into elements of polynomial order P = 8
were used. In the current computations a single element was used in every vessel. A temporal
and spatial convergence study has been performed in [27]. The boundary condition at the
terminal vessels were imposed through a terminal resistance (see Section 2.2.4) which was
either prescribed to be zero (no terminal resistance) or as given in Table 1.

To illustrate the differences in the solutions calculated using the linear and nonlinear ana-
lysis, Figure 6 shows the time histories of pressure, p, and velocity, u, at the lower end of
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Figure 5. Connectivity of the 55 main arteries in the human arterial system.

the network (anterior tibial artery 55). No terminal resistance has been applied to the terminal
vessels and the outgoing waves are therefore completely absorbed: no wave is reflected back
into the system. The linear and nonlinear results are plotted on the same figure. The linear
solution is represented by the solid line and the nonlinear solution is the dashed line. The
bifurcations are well-matched for the linear system and there are no reflection sites within the
network. Consequently the linear solution is the same shape as the input wave. We do note
slight oscillations at the start of the wave t/T = 0·2 which are due to numerical oscillations
associated with the discontinuous nature of the derivative of the input wave in time and space.
The nonlinear solution shows a small flow reversal and decrease in pressure at the tail of the
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Table 1. Area Ai
0, vessel length li and reduced wave speed ci

0T/d1 for well-matched compu-

tational model normalised by the time period T , the aortic area A1
0 = πd2

1 /4 and the diameter
of vessel 1, d1. This table combines the physiological data published in [13, 11, 12]. Note the
absence of vessel 30 to be consistent with [11].

No. Ai
0/A1 li/d1 ci

red Rt No. Ai
0/A1 li/d1 ci

red Rt

1 1·0000 1·361 158·52 – 28 0·3917 1·803 148·89 –

2 0·7382 0·680 150·36 – 29 0·1600 0·680 157·06 –

3 0·2261 1·156 161·05 – 31 0·0971 2·245 155·71 0·925

4 0·1354 1·156 167·53 – 32 0·0651 2·415 164·91 0·921

5 0·1035 6·020 173·74 – 33 0·0690 2·143 178·06 0·93

6 0·0267 5·034 291·52 0·906 34 0·1152 2·007 177·02 0·934

7 0·1227 14·354 171·71 – 35 0·3289 0·340 146·65 –

8 0·0623 7·993 230·45 0·82 36 0·0567 1·077 185·25 –

9 0·0954 2·279 214·30 – 37 0·2918 0·340 151·11 –

10 0·0174 2·687 361·71 0·956 38 0·0567 1·188 185·25 0·861

11 0·0868 5·816 219·43 0·893 39 0·2046 3·605 159·87 –

12 0·0675 5·986 231·07 0·784 40 0·0174 1·701 224·12 0·918

13 0·0675 6·020 223·23 0·79 41 0·1843 0·340 152·79 –

14 0·6608 1·327 147·68 – 42 0·1022 2·007 170·09 –

15 0·0789 7·075 185·93 – 43 0·1022 1·973 170·09 –

16 0·0516 5·986 247·12 0·784 44 0·1075 4·898 223·25 –

17 0·0516 6·020 238·74 0·791 45 0·0419 1·701 347·08 0·925

18 0·5805 1·769 149·19 – 46 0·0603 15·068 250·55 –

19 0·1040 1·156 177·64 – 47 0·0586 4·286 244·62 0·885

20 0·0191 5·034 316·98 0·906 48 0·0654 10·918 329·38 0·724

21 0·0958 14·354 182·68 – 49 0·0181 11·667 422·55 0·716

22 0·0486 7·993 245·26 0·821 50 0·1075 4·932 223·25 –

23 0·0744 2·279 228·02 – 51 0·0419 1·701 347·08 0·925

24 0·0137 2·687 384·15 0·956 52 0·0603 15·102 250·55 –

25 0·0679 5·816 233·32 0·893 53 0·0586 4·320 244·62 0·888

26 0·0465 2·721 187·16 0·627 54 0·0651 10·952 329·82 0·724

27 0·5308 3·537 145·46 – 55 0·0180 11·701 423·62 0·716

input wave when t/T = 0·5. This is due to the arteries only being well matched for the
linear but not for the nonlinear theory which results in a small amount of reflection and re-
reflections. The nonlinear solution of p and u show that the input wave becomes skewed as
the wave travels through the system. In both systems the magnitude of p remains relatively
constant whilst the magnitude of u decreases.

The skewing of the nonlinear wave is due to nonlinearities introduced both in terms of
the area dependent relationship of the wave speed c and the convective nonlinearity. For a
forward-travelling wave the velocity and pressure variations have the same sign as shown in
Figure 6. The wave speed and convective nonlinearities have a similar sign contribution which
moves the nonlinear wave forward more rapidly than the linear wave. This motion causes the
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Figure 6. Linear (solid) and nonlinear (dashed) pressure and velocity histories in the anterior tibial (artery 55) of
the idealised model normalised by the peak value in vessel 1. No terminal resistance is applied in this model.

Figure 7. Linear (solid) and nonlinear (dashed) pressure and velocity histories in the ascending aorta (artery 1)
of the idealised model normalised by the peak value in vessel 1. Terminal resistance is applied in this calculation
according to Table 1.

pressure and velocity peak to catch up with the start of the wave. Finally we note that there is
a lag of the wave in time of approximately t/T = 0·2 for the input wave to reach the terminal
vessels.

Figure 7 shows a comparison of the waveforms in the ascending aorta (artery 1) calcu-
lated using the linear and nonlinear models. Terminal resistances have been applied in this
calculation as given in Table 1. The time u and p history plots are shown for the fifth cycle.
The overall shape and magnitudes of the wave are similar for both solution methods with a
slight increase in the peak pressure and a corresponding decrease in the velocity waveform.
In both models the velocity peak precedes the time of the pressure peak. This is consistent
with the initial contribution of the reflected waves having an additive effect to pressure and a
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Figure 8. Linear pressure and velocity histories in; the ascending aorta (artery 1) shown by the solid line; the
thoracic aorta I (artery 18) shown by the dashed line and the abdominal aorta IV (artery 39) shown by the dotted
line. All values are normalised by the peak values in vessel 1. Terminal resistance is applied in this calculation
according to Table 1.

subtractive effect on velocity. This property can be associated with the changes in perturbation
over a backward W2 wave, i.e.,

	u + c0

A0
	a = 0.

At approximately t/T = 4·3 we observe a feature similar to the dichrotic notch in the
pressure waveform which is associated with the closure of the aortic valve in vivo. Although
the action of the aortic valve is not included in this model directly the discontinuity of the
imposed input velocity at t/T = 0 and 0·3 can be thought of as a function of the valve. Since
we have treated the inflow as an absorber, the reflected waves are not reflected back into the
system. We also note another peak in the descending part of the pressure wave which is not
normally observed in the ascending aorta waveform but has been seen in waveforms further
down the aorta. Uniformly increasing the wave speed of the system to

√
1·5ci

0 removes this
feature.

Figure 8 shows a comparison of the pressure and velocity waveforms for arteries 1, 18 and
39 normalised by the peak values of the waveform in artery 1. From this figure we observe
that the peak pressure increases as we move down the system, even though the mean pressure
is observed to slowly decrease. This is in agreement with in vivo data [28, Chapter 8].

4.2. FLOW REVERSAL IN A NETWORK

As we have seen in Section 4.1, wave reflections at arterial bifurcations and the known res-
istance of the system lead to different flow waveforms at different locations in the network.
The shape of the flow waveform, which is measurable in the human arterial system using
ultrasound techniques, is also frequently used as a diagnostic input and so it is reasonable to
ask what factors influence waveform patterns such as flow reversal. To simplify the problem,
we will consider a model where the peripheral resistance is low and thereby remove the con-
tribution of wave reflections from further down the arterial tree. Physiologically, this model
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Figure 9. x,t plot of the parent vessel of a bifurcation expressed in terms of the characteristic variables.

might be relevant to the relatively low resistance of the vascular beds such as the cerebral
system or the fetal circulation of the placenta. Therefore, examples of the model configuration
might be considered appropriate to the carotid arteries or the umbilical cords. Further, as
shown in MacDonald [28, Chapter 8] the flow waveform in the umbilical cord of a healthy
foetus is typically positive throughout the cardiac cycle. Motivated by the observation that
convective nonlinearity does not play a significant role in the wave form patterns, we will use
the linearised model to analyse the system.

We consider, as shown in Figure 9, a bifurcation where the parent vessel is of length l and
assume that at time t = 0 the solution is at a constant equilibrium state (ā, ū′). This state

corresponds to constant equilibrium characteristic variables W
0
1,W

0
2 and we recall that for the

linearised system

u′ = W1 + W2

2
a = A0

c0

W 0
1 − W 0

2

2
. (61)

Introducing a perturbation to the incoming equilibrium characteristic W
0
1 at the inflow to

the parent vessel of the form 	W1(0, t) necessarily leads to a change in area and velocity,
denoted as (	a,	u), from the equilibrium values (ā, ū′). Since the propagation velocities
λ0

1, λ
0
2 of the characteristic variables W 0

1 and W 0
2 are λ0

1,2 = ±c0, the characteristic variables
are constant along the lines t = x0±x

c0
in the x,t plot as shown in Figure 9.

To derive the velocity time history of a point x0 as indicated by line (A-B) in Figure 9, we
initially assume the boundary x = 0 is non-reflecting. There are then three separate solution
regimes to be considered. Initially for 0 ≤ t < tI , where tI = x0

c0
, the solution is dictated by the

equilibrium characteristics W
0
1,W

0
2. For the time period tI ≤ t < tI + tI I where tI I = 2 l−x0

c0

the solution is dictated by the characteristics W 0
1 = W

0
1+	W1 and W

0
2. Finally for t > tI +tI I
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the solution is dependent on the incoming forward characteristic W 0
1 = W

0
1 + 	W1 and the

reflected backward characteristic, W 0
2 = W

0
2 +δW2 where δW2 is the reflected state after 	W1

reaches the bifurcation at x = l. Denoting the velocity at x = x0 in the three temporal regimes
as uI (t), uII (t) and uIII (t), we note from Equation (61) that

u(x0, t) =




uI (t) = W
0
1+W

0
2

2 t < tI

uII (t) = W
0
1+	W1+W

0
2

2 tI < t < tI + tI I

uIII (t) = W
0
1+	W1+W

0
2+δW2

2 tI + tI I < t

, (62)

where tI = x0
c0

, tII = 2 l−x0
c0

.

Since the velocity uI (t) is only determined by the equilibrium values W
0
1 and W

0
2, we can

immediately state that

uI (t) = W
0
1 + W

0
2

2
= ū′.

To obtain an expression for uII (t) we need to relate the perturbation 	W1(0, t) to a change
in velocity 	u(0, t). In general a change in the inflow conditions can lead to a change in
	W1(0, t) and W 0

2 (0, t) such that

W 0
1 (0, t) = W

0
1 + 	W1(0, t),

W 0
2 (0, t) = W

0
2 + 	W2(0, t),

where

W
0
1,2 = ū′ ± c0

A0
ā, (63)

	W1,2 = 	u ± c0

A0
	a. (64)

For t < 2l
c0

the reflected wave has not reached the inflow boundary at x = 0. Therefore

W 0
2 (0, t) must remain constant and

	W2 = 0 ⇒ 	u(0, t) = c0

A0
	a(0, t) 0 ≤ t < 2l

c0
. (65)

Keeping the inflow as an absorbing boundary for t > 2l
c0

requires that 	W2(0, t) = δW2(0, t −
l
c0

).
Using condition (65) in Equation (64), we can relate 	W1(0, t) to 	u(0, t) through

	W1(0, t) = 2	u(0, t) 0 ≤ t < 2l
c0

. (66)

Noting that 	W1(x0, t) = 	W1(0, t − tI ), we obtain

uII (t) = W
0
1 + 	W 0

1 (0, t − tI ) + W
0
2

2
= ū′ + 	u(0, t − tI )

for t < tI + tI I .
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Figure 10. Decomposition of incoming wave at the bifurcation into incremental components.

At t = l/c0 the perturbed incoming characteristic W 0
1 + 	W1 reaches the bifurcation at

x = l and after a linear reflection we have a new characteristic state

W 0
1,2(l, t) = W

0
1,2 + δW1,2(l, t), where δW1,2 = δu(l, t) ± c0

A0
δa(l, t).

From Section 2.2.3 we recall that for a linear reflection

δ̂a

	a
= − δ̂u

	u
= Rf ,

where

δa = 	a + δ̂a and δu = 	u + δ̂u

and

δW2(l, t) = 	u(l, t) − c0

A0
	a(l, t) − Rf

[
	u(l, t) + c0

A0
	a(l, t)

]
= 	W2(l, t) − Rf 	W1(l, t). (67)

We have previously seen that 	W2(0, t) = 0 for t < tI . It is, however, not immediately
evident that this condition at x = 0 can be applied at x = l, since the two boundaries are con-
nected by a W1 forward characteristic. Nevertheless, we recall that the backward characteristic
W2 relates information across the W1 characteristic and this observation leads to the condition
	W2(l, t) = 0. To illustrate this result, we consider the example shown in Figure 10 where
we decompose an incoming wave into incremental piecewise constant components, i.e.,

	u(t) =




	u1 t < 	τ1

	u1 + 	u2 	τ1 ≤ t ≤ 	τ2
...

...

.

If we consider the backward characteristic labelled A-B in Figure 10, the state 	a1,	u1 is
related to the equilibrium state ā = 0, ū′ = 0 along the backward characteristic through the
expression

	u1 − c0

A0
	a1 = 0. (68)
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Similarly along the characteristic line marked C-D in Figure 10 we have that

	u1 + 	u2 − c0

A0
(	a1 + 	a2) = 	u1 − c0

A0
	a1

which implies that

	u2 − c0

A0
	a2 = 0. (69)

An analogous argument indicates that conditions (68) and (69) also hold after the reflection.
From this we deduce that 	W2(l, t) = 0 for all time, and equation (67) becomes

δW2(l, t) = −Rf 	W1(l, t). (70)

Finally since uIII (t) is determined by the forward characteristic W
0
1 + 	W1(0, t) and back-

ward characteristic, W
0
2 + δW2(l, t) then, applying Equations (70), we obtain

uIII (t) = ū′ + 	u(0, t − tI ) − Rf 	u(0, t − tI I ), (71)

where

δW2(x0, t) = δW2(l, t − l−x0
c0

) = −Rf W1(0, t − tI I )

and we have assumed that 	W1(0, t) obeys relation (66) for all time. The evaluation of u(0, t)

from Equation (62) only equals 	u(0, t) for t < 2l
c0

since the reflection wave will reach the
absorbing inflow boundary after this time.

In summary, for an incoming wave defined by 	W1(0, t) = 2	u(0, t), the velocity history
at point x = x0 is

u(x0, t) =




ū′ t < tI
ū′ + 	u(0, t − tI ) tI < t < tI + tI I

ū′ + 	u(0, t − tI )

−Rf 	u(0, t − tI − tI I ) tI + tI I < t

. (72)

If x = 0 is taken to be a non-reflecting boundary, we should expect an infinite series
of reflected waves from the junctions at both ends of the vessel. The initial solution will be
identical to Equation (72) up to the time t < 3tI + tI I after which time the incoming wave
has reflected from both the ends of the vessel and return to point x = x0. Realising that
an analogous reflection occurs as a backward W2 characteristic meets the left boundary (i.e.,
δW1 = −Rl

f 	W2), we can define the velocity time history at x = x0 in a vessel between two
bifurcations as

u(x0, t) = 	u(0, t − tI ) − Rr
f 	u(0, t − tI − tI I )

+
∞∑

n=1

(Rl
f )n(Rr

f )n 	u(0, t − (2n + 1)tI − n tII ) (73)

−
∞∑

n=1

(Rl
f )n(Rr

f )n+1 	u(0, t − (2n + 1)tI − (n + 1)tII ),

where Rl
f and Rr

f are the reflections from the left and right boundaries, respectively, and
	u(0, τ ) = 0 for τ < 0.
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4.2.1. Results
An initial observation from Equations (72) and (73) is that, if Rl

f , Rr
f < 0, then (Rl

f )n(Rr
f )n

and −(Rl
f )n(Rr

f )n+1 are both positive. Therefore, provided that 	u(0, t) and ū′ are both
positive, the velocity history at any point in the vessel will remain positive. In stating this
result we have also assumed that there are no significant reflected waves from other vessels
which is true when the terminal resistance is small. The condition Rf < 0 requires that

A1
0

c1
0

<
A2

0

c3
0

+ A2
0

c3
0

,

where the superscripts refer to the parent (‘1’), and daughter vessels (‘2’ and ‘3’) as introduced
in Section 2.2.3.

As previously mentioned, a physiological example of vessels perfusing a bed of relat-
ively low terminal resistance are the umbilical arteries where, for a healthy foetus, the flow
waveform is strictly positive. From anatomical measurement of placenta casts, we have cal-
culated reflection coefficient at the downstream end of two umbilical arteries of Rr

f = −0·5
and Rr

f = −0·4 (based upon area measurements and assuming constant wave speed). In a
normal arterial bifurcation the upstream reflection coefficient is typically also negative since,
physiologically, forward-travelling waves are well matched. Assuming this at the upstream
bifurcation to the umbilical arteries leads to the prediction of a positive flow waveform by
the above analysis. Under abnormal conditions where the terminal resistance is increased,
the possibility of negative waves entering from a terminal reflection is introduced. This is
consistent with the medical practise of using a flow reversal as a diagnostic indicator.

When Rf > 0, the velocity contribution from the reflected wave at the bifurcation is
negative and so some period of reversed flow can exist in our simplified model. This is il-
lustrated in Figure 11 where we show a single bifurcation model. In this model we consider
three vessels where each vessel is 20D long where D is the diameter of the parent vessel.
The reduced wave speed cred = T c0/D of a vessel with a diameter of D = 2·5cm, a time
period T = 1 sec and a wave speed of c0 = 3 m/s is cred = 120. To match these conditions
in our example we keep T = 1 and set the model wave speed to be cmodel

0 = 120 in all
vessels. Considering a peak physiological inflow to be 25 cm/s implies that the Mach number
is M = u/c0 = 1/12. Matching this Mach number in our model therefore requires a peak
input velocity of u = Mcmodel

0 = 10. Finally, to generate a linear reflection of Rl
f = 0·5, we

specify that the daughter vessels have a diameter of D/
√

6. The input for this problem was
prescribed to be

	W1(0, t) = 2	u(0, t) = 20 sin2(3πt)H(t − 1/3), (74)

where H(τ) is the Heaviside step function. The inflow boundary imposes a positive sinusoidal
velocity inflow over a third of the characteristic period and all backwards waves are completely
absorbed. All computations were performed with a single element representing each vessel
and an 11th order polynomial expansion within each element. A second-order time-stepping
scheme was applied with a non-dimensional time step of 	t/T = 0·001.

Figure 11 shows the time history of the velocity and area normalised by the peak velocity
and equilibrium area in the parent vessel. Also indicated by the dashed line in Figure 11(c) is
the analytic solution due to the single reflection at the bifurcation. As can be seen in this figure
and previously shown by Equation (72), the solution is simply comprised of the incoming
wave and a time-shifted reflected wave. The positive reflection coefficient means that the sign
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Figure 11. Linearised reflection from a single bifurcation. a) Model configuration. b) velocity and area history at
the centre of the parent vessel. c) velocity and area time history at the beginning, middle and end of the parent
vessel. d) velocity and area time history at the centre of the parent vessel when wave speed is doubled.

of the velocity perturbation due to the reflected wave is the opposite of the incoming velocity.
Due to the phase shift the summation of the two waves causes a flow reversal the temporal
extent of which is of the order O(tII ) where we recall that tI I = 2(l − x0)/c0.

This point is further highlighted in Figure 11(c) where we show the time history at the
beginning (inflow), middle and end (bifurcation) of the parent vessel. The first wave form
corresponds to the history point at the inflow of the vessel. Since at this point x0 = 0 and
tI I is maximal, there is a significant phase shift between the incoming and reflected waves.
The dimensions of the problem are such that at x0 = 0 tI I = 2 × 20/120 = 1/3 which is
exactly the time period of the input pulse and so we observe two distinct waves. Considering
the history point at the bifurcation, i.e., x0 = 20D, we observe an opposite effect: there is
no phase shift and the velocity profiles therefore cancel leading to a single velocity peak of
magnitude u/umax = 0·5. This interaction also has an additive effect on the area variation
causing a maximal deflection.

Figure 11(d) shows the same example considered in Figure 11(b) but where the wave speed
has been doubled and all numerical parameters are kept fixed. This has the effect of halving
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Figure 12. Linearised reflection of a vessel between two bifurcations (Rl
f = −0·5, Rr

f = 0·5) a) Model config-
uration. b) Comparison of linear (solid) and nonlinear (dashed) velocity history. c) Velocity and area time history
in the middle of vessel 2 using a wave speed of c0 (solid) and 2c0 (dashed). d) Comparison of linear (solid) and
nonlinear (dashed) area time history. All time histories are evaluated at the centre of vessel 2.

both tI (the time for the wave to reach x0) and tI I although the inflow wave pulse still has
a non-zero contribution for a time of T /3. As indicated by the dashed lines there is a more
significant overlap between the incoming and reflected wave. This larger overlap leads to
a reduction in the velocity peak and the extent of the flow reversal regime. A reduction in
flow reversal has been observed in vivo in [29] where an increase in wave speed was induced
through an association of smoking with arterial stiffness.

To complete our wave form analysis we consider a two bifurcation model as shown in
Figure 12 (a) and applying the same numerical resolution as the previous example. In this
problem the bottom three vessels are identical to the previous case shown in Figure 11. The
two additional upstream vessels are configured so that the upstream bifurcation of vessel 2 has
a reflection coefficient of Rl

f = −0·5. This can be achieved by using the same wave speed c0

in all vessels, making the daughter vessels of the same diameter and setting the parent vessel
diameter to

√
2D. Figures 12(b) and (d) show the velocity history evaluated at the centre
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of vessel 2 over two time periods using the input wave (74). The solid line represents the
linear model which is indistinguishable from the solution given by Equation (73) evaluated
with n = 50 terms. Also indicated in this plot is the nonlinear solution shown as a dashed
line. As observed previously, the nonlinear solution is not significantly different from the
linear solution. The most significant differences are due to the different phase properties of
the nonlinear solution. Finally in Figure 12(c) we compare the linear model using a wave
speed of c0, as indicated by the solid lines, compared to a wave speed of 2c0 as indicated
by the dashed lines. Once again we observe the greater wave cancellation for the case with a
higher wave speed and the faster decay associated with faster wave reflections.

5. Discussion and concluding remarks

Three-dimensional simulation of haemodynamics in anatomically accurate geometries has
gained a great deal of attention over the last decade. Despite this growing interest, numerical
simulation of reduced modelling, such as the one-dimensional vascular system discussed
in this paper, still offer equally important insight into the physiological behaviour of the
haemodynamics in the human vascular system. Indeed, the large range of scales within the
human circulation imply that a combination of these techniques will be required for accurate,
patient specific modelling, as advocated in [19]. Nevertheless the long length scales of pulse
waves in the human systemic system compared to the characteristic diameter of many vessels
suggest that the strength of the coupling of the three-dimensional haemodynamics to the one-
dimensional model will be relatively small, thereby supporting the concept of independently
studying the reduced model.

The advent of new imaging modalities, such as Magnetic Resonance Imaging, and the
availability of computational methods developed for compressible flows now offer the poten-
tial to solve efficiently the 1-D models in anatomically correct, patient specific arterial systems
[30, 31, 27]. Furthermore the relatively inexpensive cost of these numerical methods for large
networks (i.e., of the order of minutes in a network of 55 arteries [27]) as compared to cost
of three-dimensional modelling makes the reduced method potentially attractive for a clinical
environment if the model is appropriately validated. Accordingly there is a need to understand
the mathematical and physical motivation behind the derivation of the models, particularly in
the time-domain, rather than the frequency domain, where most of the numerical methods are
normally applied.

In this paper we have detailed the formulation of the linear and nonlinear systems. We
have also outlined the formulation of different choices of solution variables as well as the
widely applied, zero-dimensional, Windkessel model [16]. Starting from the conservative
system in terms of (A, u) variables, we then reviewed the nonlinear characteristic system
which is often necessary for many hyperbolic numerical methods. The characteristic system,
combined with mass and total-pressure conservation at a junction, then provided a consist-
ent way to extend the single vessel model to a bifurcating network. Within the context of
the method of characteristics for the linear system, we have also presented a characteristic,
time-domain derivation of the classical results for the reflection and transmission coefficients
of waves at bifurcations. In the human systemic system, unlike the pulmonary system, the
high characteristic wavespeed as compared to the average sectional velocity means that this
linearised analysis can be applied with some confidence to interpret the wave reflections in
the system. [11, 10, 26, 27].
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Using a spectral/hp element spatial discretisation with a discontinuous Galerkin Formu-
lation, we have supported the formulation of the model system by solving a network of 55
arteries originally studied by Wang and Parker [10, 11]. In previous work [26], we have
presented results in different vessels of this model network. In this paper we have focused
on demonstrating the limited role of nonlinearities in the model by numerically comparing
the solution to the linear and nonlinear models within the network. As has been previously
reported [10], the role of nonlinearity is relatively small (of the order of 10%) thereby justi-
fying the use of linearised analysis for this case. We remark, however, that the computational
effort in solving the nonlinear equations with an explicit method is not significantly different
from solving the linear equations. However, the nonlinear equations also permits more general
properties, such as taper and variable wall characteristics, to be implicitly included.

Under physiological conditions, the weak role of nonlinearity in the systemic system also
motivated the application of the linearised analysis to understand the conditions required at a
bifurcation to produce a non-reversing flow waveform. Using the methods of characteristics
and linearised reflection coefficients, we have presented a derivation of the time history of
the flow waveform in a bifurcating network of three vessels with low terminal resistance. This
analysis demonstrated that the linearised reflection coefficient needs to be negative to maintain
non-reversing flow in the parent vessel which can be achieved if the ratio of the area to the
wave speed is smaller in the parent vessel than the summation of this ratio in the two daughter
vessels. The analysis was also supported by numerical examples.

Although many components of the results and formulations presented in this paper are
available in past literature, we believe it is valuable to assemble the information in a single
presentation. A complete derivation of the linear and nonlinear governing equations is im-
portant not only for the application of many numerical methods, which typically require
time-domain formulations, but also in interpreting the results produced from these numerical
models. We would also advocate that the time-domain analysis provides a physically intuitive
way to interpret the model which is not always immediately available when treating the linear
equations in the frequency domain. Currently this type of analysis is being applied to more
complex models of monochorionic placenta networks [31] as well as the arterial network of a
single human subject [27].
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